

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 5585-5588

Tetrahedron Letters

γ -Selective allylic substitution reaction with Grignard reagents catalyzed by copper *N*-heterocyclic carbene complexes and its application to enantioselective synthesis

Satoshi Tominaga, Yukinao Oi, Toshio Kato, Duk Keun An[†] and Sentaro Okamoto*

Department of Applied Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan Received 6 May 2004; revised 25 May 2004; accepted 27 May 2004

Abstract—The reaction of allylic compounds with alkyl Grignard reagents in the presence of a catalytic amount of copper *N*-heterocyclic carbene (NHC) complexes proceeded predominantly in an $S_N 2'$ reaction pathway to give γ -substituted product in excellent yield. The method was applied to asymmetric reaction by using optically active NHC ligands. © 2004 Elsevier Ltd. All rights reserved.

Copper-catalyzed allylic substitution reactions have received widespread acceptance as valuable methods in organic synthesis.^{1,2} Among various organometallic counterparts in these reactions, Grignard reagents have been widely used due to their variety and accessibility. The regioselectivity of the substitution is dependent upon the structure of the allylic substrates and the Grignard reagents and is also influenced by the reaction conditions including copper salt, solvent(s), temperature and the addition order of reagents.¹ Protocols have been developed to effect clean γ -substitution (S_N2' reaction), where CuCN (or its salts) has been utilized in general. However, further development of the reaction with copper catalysts having a modifiable organic ligand other than simple inorganic salts is desired because it would enable catalyst-based control of the reaction including enantioselection.³ Herein reported is a novel procedure for S_N2'-selective reaction with a Grignard reagent catalyzed by copper N-heterocyclic carbene (NHC) complexes and its application to enantioselective substitution by using chiral modified NHC ligands.^{4,5}

Table 1 shows the feasibility of CuCl-NHC complexes 4^6 as a catalyst for Grignard substitution of allylic substrates 1. Thus, (E)-2-nonenol derivatives 1 (R = n-C₆H₁₃) were treated with *i*-PrMgCl (1.5 equiv) in the presence of a catalytic amount of 4 (1 mol%) at $0^{\circ}C.^{7}$ As revealed from Table 1, high γ -selectivity was observed in the reaction with 1 having a variety of leaving groups (X) such as carbonate, acetate, phosphate and chloride when the reaction was carried out in diethyl ether. It was observed that the reaction with 4a was slower than that with 4b and the regioselectivity with 4a was somewhat lower than that with 4b (entries 1 and 2),⁸ probably due to steric bulkiness of the ligated NHC part in 4a. The reaction could be effectively catalyzed by a reduced amount of catalyst (0.1 mol%) (entry 3). While allylic carbonate gave α -product 3 predominantly in THF (entry 4), allylic chloride afforded γ -product 2 nearly exclusively in both ether and THF (entries 7 and 8). These results suggest that coordination of the leaving group in the substrate to the metal may be important in the reaction of ester allylic substrates. On the basis of the fact that a CuCl-catalyzed reaction gave α -product exclusively (entry 9), the high γ -selectivity attained in the 4-catalyzed reactions indicates that the NHC-copper bond (coordination) is stable and was not cleaved during the catalysis.

Keywords: Allylic substitution; Organocopper; *N*-Heterocyclic carbene; Asymmetric reaction.

^{*} Corresponding author. Tel.: +81-45-481-5661; fax: +81-45-413-9770; e-mail: okamos10@kanagawa-u.ac.jp

[†] Present address: Department of Chemistry, Kangwon National University, 192-1, Hyoja2-Dong, Chunchon, Kangwon-Do 200-701, South Korea.

Table 1.

$R \xrightarrow{(1.5 \text{ equiv.})} X \xrightarrow{(1.5 \text{ equiv.})} (1.5 \text{ equiv.}) \xrightarrow{(1.5 \text{ equiv.})} R ($						
Entry	Х	Catalyst	Solvent	2 :3 ^a	Total yield %	
1	OCO ₂ Et	4a	Ether	95:5	Quant.	
2	OCO ₂ Et	4b	Ether	>99:1	Quant.	
3	OCO ₂ Et	4b (0.1 mol%)	Ether	>99:1	Quant.	
4	OCO ₂ Et	4b	THF	24:76	50 ^b	
5	OAc	4b	Ether	94:6	Quant.	
6	$OP(O)(OEt)_2$	4b	Ether	>99:1	Quant.	
7	Cl	4b	Ether	>99:1	Quant.	
8	Cl	4b	THF	96:4	96	
9	OCO ₂ Et	CuCl	Ether	1:99	90	

^a Determined by 500 MHz ¹H NMR analysis.

^bReaction was performed for 48 h. 50% of **1** was recovered.

Table 2.

		K 4b (1 mol%) ether R + 2	R'R" R 3	
Entry	$1 (X = OCO_2 Et)$	R″MgX	2:3	Total yield %
1	<i>n</i> -Hex X	MeMgl	97:3	88
2		<i>n</i> -Hex·MgBr	99:1	Quant.
3		◯ →MgBr	99:1	Quant.
4		PhMgBr ^a	2:98	Quant.
5	n-Hex Cl	PhMgBr ^a	3:97	82
6	Ph X	<i>i</i> -PrMgCl	95:5	82
7	TBSO	<i>i</i> -PrMgCl	>99:1	Quant.
8	BnO	<i>i</i> -PrMgCl	>99:1	Quant.
9ь	X	MeMgl	>99:1	84

^a PhMgBr was prepared in THF.

^b 5 mol% of **4b** was used.

Table 2 summarizes representative examples of this reaction using a variety of allylic substrates and Grignard reagents. These results show the following features of this substitution reaction: (i) Primary alkyl including methyl and secondary alkyl Grignard reagents could provide **2** in excellent yield and regioselectivity. (ii) But aryl Grignard reagents gave α -product **3** predominantly (entries 4 and 5). (iii) Regarding allylic substrates, the reaction with disubstituted and trisubstituted **1** having a variety of substituents such as alkyl, aryl, siloxy- and alkoxymethyl groups with *E*- or *Z*-geometry proceeded in a highly γ -selective way.

As shown in Scheme 1, the reaction of allylic carbonate 1 and *i*-PrMgCl with a stoichiometric amount of **4b** was found to be much slower than that with a catalytic

amount of **4b** mentioned above. On this basis, the major active catalyst in the present reaction can be postulated to be an ate-complex (higher order cuprate) such as the type $[(NHC)CuR_2]^-(MgX)^+$ but not a complex of the type $(NHC)CuR^9$ although confirmation of the reaction mechanism and explanation of a high regioselectivity must await further study.

(from the reaction of (*E*)-1d with 4d. See Table 3, entry 11) $[\alpha]_D^{23}$ +7.7 (*c* 0.275, CHCl₃)

Lit.,¹³ for *R*-isomer: $[\alpha]_D$ -12 (*c* 1.0, CHCl₃).

Scheme 2.

With these results in hand, we turned our attention to perform the reaction in an asymmetric way by using copper complexes with chiral modified NHC ligands. Scheme 2 and Table 3 summarize preliminary results. Thus, 4-siloxy-2-buten-1-ol derivatives **1a**–**d** were treated with n-C₆H₁₃MgBr in the presence of copper complexes with enantiomerically pure C₂-symmetric NHC ligands, **4c**–**f**¹⁰ (5 mol%), in ether at -20 °C (Scheme 2). The resulting γ -product¹¹ was isolated

Ta	ble	3.
14	DIC	5.

and converted to the corresponding MTPA-esters,¹² 500 MHz ¹H NMR analyses of which confirmed the enantiomeric excess (ee) of the γ -product. The γ -product obtained by the reaction of (*E*)-1d with 4d catalyst (entry 11) was converted to the known alcohol 5¹³ by ozonolysis and the following reduction, and comparison of its optical rotation with that reported determined the absolute configuration as illustrated in Scheme 2.

As can be seen from Table 3, the reactions proceeded quantitatively in S_N2'-selective fashion to give optically active γ -substituted product with low to moderate enantiomeric purity. As revealed from the results in entries 1-4, the catalyst with sterically demanding N-substituents (4d) gave the highest ee. Interestingly, introduction of additional C_2 -chirality into the heterocyclic part of NHC resulted in inversion or decrease of the enantioselectivity (entries 3 and 4). Allylic acetate and 2-pyridyl ether¹⁴ were good substrates but carbonate and chloride gave low ee. Inversion of the product configuration was observed when E-allylic substrates were used instead of Z-isomers, and the ee of the products from E-substrates was somewhat lower than that from the corresponding Z-isomers (entries 5 and 11). The highest enantiomeric ratio of 85:15 was attained by the reaction of 2-pyridyl ether (Z)-1d with catalyst 4d (entry 10).

In summary, we have demonstrated that copper *N*-heterocyclic carbene (NHC) complexes are a useful catalyst for the highly $S_N 2'$ -selective allylic substitution reaction with Grignard reagents and the method can be applied to asymmetric reaction by using chiral modified NHC ligands although the preliminary results presented here reached moderate level of ee. Further investigation on the scope of the present reaction and its synthetic utilization including development of method to attain more efficient enantioselection is underway in our laboratory.

Entry	Allylic substrate	Catalyst		γ-Product			
			γ:α	% Ee ^b	Config. ^c	$[\alpha]_{D}^{d}$	
1	(Z)-1a	4c	87:13	40	R	+6.6	
2		4d	95:5	60	R	+10.0	
3		4 e	88:12	38 ^e	S	-6.1	
4		4f	84:16	6 ^e	R	+1.0	
5	(<i>E</i>)-1a	4d	97:3	38 ^e	S	-6.1	
6	(Z)-1b	4c	96:4	5 ^e	R	+0.9	
7	(Z)-1c	4c	77:23	8 ^e	S	-1.3	
8		4d	84:16	16 ^e	R	+2.5	
9	(Z)-1d	4c	91:9	36	R	+6.3	
10		4d	98:2	70	R	+11.0	
11	(<i>E</i>)-1d	4d	86:14	60	S	-9.8	

^a Total yield of the reaction was 93-100%.

^b Determined by 500 MHz ¹H NMR analyses of the corresponding MTPA-esters, unless otherwise indicated.

^cConfirmed for entry 11 (see text).

 ^{d}c in 1.0 CHCl₃, at 23 °C.

^eBased on $[\alpha]_D$ value.

References and notes

- 1. Lipshutz, B. H.; Senguota, S. Org. React. 1992, 41, 135.
- For organocopper chemistry, see: Organocopper Reagents; Taylor, R. J. K., Ed.; Oxford University Press: Oxford, 1994; Lipshutz, B. H. In Organometallics in Synthesis; Schlosser, M., Ed.; Wiley: Chichester, 2002; p 665; Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VHC: Weinheim, 2001.
- 3. Chiral copper complex-catalyzed enantioselective allylic substitution reactions: with Grignard reagents: van Klaveren, M.; Persson, E. S. M.; del Villar, A.; Grove, D. M.; Bäckvall, J.-E.; van Koten, G. Tetrahedron Lett. 1995, 36, 3059; Karlström, A. S. E.; Huerta, F. F.; Meuzelaar, G. J.; Bäckvall, J.-E. Synlett 2001, 923; Meuzelaar, G. J.; Karlström, A. S. E.; van Klaveren, M.; Persson, E. S. M.; del Villar, S.; van Koten, G.; Bäckvall, J.-E. Tetrahedron 2000, 56, 2895; Alexakis, A.; Malan, C.; Lea, L.; Benhaim, C.; Fournioux, X. Synlett 2001, 927; Alexakis, A.; Croset, K. Org. Lett. 2002, 4, 4147; Croset, K.; Polet, D.; Alexakis, A. Angew. Chem., Int. Ed. 2004, 43, 2426; With dialkylzinc compounds, Dübner, F.; Knochel, P. Angew. Chem., Int. Ed. 1999, 38, 379; Dübner, F.; Knochel, P. Tetrahedron Lett. 2000, 41, 9233; Malda, H.; van Zijl, A. W.; Arnold, L. A.; Feringa, B. L. Org. Lett. 2001, 3, 1169; Luchaco-Cullis, C. A.; Mizutani, H.; Muphy, K. E.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2001, 40, 1456.
- Asymmetric conjugate addition reactions catalyzed by copper imidazolium carbene complexes: (a) Guillen, F.; Winn, C. L.; Alexakis, A. *Tetrahedron: Asymmetry* 2001, *12*, 2083; (b) Fraser, P. K.; Woodward, S. *Tetrahedron Lett.* 2001, *42*, 2747; (c) Alexakis, A.; Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P. *Adv. Synth. Catal.* 2003, *345*, 345.
- Other catalyses with copper imidazolium carbene complexes in organic synthesis: (a) Jurkauskas, V.; Sadighi, J. P.; Buchwald, S. L. Org. Lett. 2003, 5, 2417; (b) Kaur, H.; Zinn, F. K.; Stevens, E. D.; Nolan, S. P. Organometallics 2004, 23, 1157, and references for recent structural studies of N-heterocyclic carbene copper complexes cited therein.
- Compounds 4a⁵ and 4b were prepared by the reaction of CuCl, *t*-BuONa and the corresponding imidazolium chloride in THF according to the reported procedure.⁵ The isolated 4a and 4b were used. 4b: Mp 268 °C; ¹H NMR (CDCl₃, 500 MHz): δ 7.31 (t, J = 7.5 Hz, 2H), 7.21 (d, J = 8.0 Hz, 4H), 7.10 (s, 2H), 2.17 (s, 12H); ¹³C NMR (CDCl₃, 125 MHz): δ 137.4, 134.9, 129.6, 128.8, 122.1,

17.8 (one carbon could not be detected); IR (neat) 3166, 1695, 1599, 1557, 1479, 1443, 1404, 1335, 1290, 1230, 1161, 1110, 1038, 948, 786, 735, 693, 609 cm⁻¹. Elemental analysis, calcd for $C_{19}H_2N_2OClCu$: C, 60.79; H, 5.37; N, 7.46. Found: C, 60.95; H, 5.54; N, 7.47.

- 7. To a suspension of CuCl–NHC complex 4 (0.02 mmol) in ether (1 mL) was added Grignard reagent (0.7–1.5 M in ether, 3.0 mmol) at 0 °C and the mixture was stirred for 0.5 h at this temperature. To this was added a solution of allylic substrate 1 (2.0 mmol) in ether (2 mL) and the mixture was stirred at 0 °C. After confirming the completion of the reaction by TLC analysis, saturated aqueous NH₄Cl was added. Usual extractive work-up and passing through a short silica gel column yielded a mixture of α - and γ -products.
- 8. TLC analysis of the reaction mixture indicated that for complete consumption of **1a** it needed 2 h for the reaction with **4a** and 30 min for the reaction with **4b**.
- 9. Synthesis and structural study of (NHC)Cu(I) methyl complex were reported: Mankad, N. P.; Gray, T. G.; Laitar, D. S.; Sadighi, J. P. *Organometallics* **2004**, *23*, 1191.
- 10. Compounds 4c-f were prepared from the corresponding imidazolium salts,^{4c} *t*-BuONa and CuCl in THF. The resulting mixture was filtered through a pad of Celite and the filtrate was stored under Ar. The THF-solution containing 4c-f, respectively, thus obtained was charged into the reaction vessel and THF was removed under reduced pressure prior to use.
- 11. *tert*-Butyldimethyl(2-hexylbut-3-enyloxy)silane: ¹H NMR (CDCl₃, 270 MHz): δ 5.62 (ddd, J = 8.4, 9.7, 17.8 Hz, 1H), 4.97–5.07 (m, 2H), 3.52 (dd, J = 6.3, 11.2 Hz, 1H), 3.49 (dd, J = 6.3, 11.2 Hz, 1H), 2.07–2.23 (m, 1H), 1.10–1.60 (m, 10H), 0.89 (s, 9H), 0.88 (t, J = 7.1 Hz, 3H), 0.07 and 0.04 (2s, each 3H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 140.6, 115.2, 66.7, 31.8, 30.8, 29.4, 27.0, 26.0, 22.7, 18.4, 14.1, -5.3, -5.4; IR (neat) 3076, 2926, 2854, 1644, 1470, 1383, 1365, 1254, 1101, 1008, 942, 915, 837, 777 cm⁻¹. Elemental analysis, calcd for C₁₆H₃₄OSi: C, 71.04; H, 12.67. Found: C, 70.64; H, 13.00.
- 12. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1971, 95, 512.
- 13. Gurjar, M. K.; Bhaket, P. Heterocycles 2000, 53, 143.
- 14. We found that the reaction of allylic 2-pyridyl ethers with alkyl Grignard reagents in the presence of a catalytic amount of CuCN in ether proceeded highly predominantly in an $S_N 2'$ fashion (unpublished results).